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Inline CBET model including SRS backscatter

David Bailey

Lawrence Livermore National Laboratory, Livermore, CA 94551

Cross-beam energy transfer (CBET) has been used as a tool on the National

Ignition Facility (NIF) since the first energetics experiments in 2009 to control the

energy deposition in ignition hohlraums and tune the implosion symmetry. As large

amounts of power are transferred between laser beams at the entrance holes of NIF

hohlraums, the presence of many overlapping beat waves can lead to stochastic ion

heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett.

109, 195004 (2012)]. Using the CBET gains derived in this paper, we show how to

implement these equations in a ray-based laser source for a rad-hydro code.
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I. INTRODUCTION

Overlapping multiple high power laser beams in plasmas can lead to cross-beam energy

transfer (CBET), a process similar to Brillouin scattering in which the beat wave created by

crossing laser beams drives a plasma oscillation that acts like a Bragg cell, scattering a beam

in the direction of the other one [1, 2]. CBET has turned out to be a major player in inertial

confinement fusion (ICF) experiments over the past few years, for both direct-drive and

indirect-drive geometries. For indirect-drive experiments on the National Ignition Facility

(NIF), control of CBET by wavelength separation tuning [3, 4] has been demonstrated at the

beginning of the National Ignition Campaign in 2009 [5–7]. It has since then continuously

been used as a tool to control the equatorial energy balance inside the “hohlraum” targets,

and has even been developed further by adding additional wavelength tuning capabilities to

control the polar symmetry or help mitigate backscatter by transferring laser energy away

from the high-backscatter risk regions of the hohlraum and into the safer ones [8, 9]. On the

other hand, for direct-drive experiments at the Omega facility, CBET moves energy from

incoming laser beams into the refracted outer edges of outgoing laser beams, thus reducing

the amount of laser energy being deposited into the coronal plasma [10–12].

In CBET, the amount of power being transferred depends on the amplitude of the density

modulation driven by the ponderomotive force of the beat wave, and on the proximity of the

driven oscillation to an ion acoustic mode of the plasma. For two laser beams with frequencies

ωm, ωn and wave vectors km, kn driving a beat wave with wave vector k = km − kn and

frequency ωk = ωm −ωn, the coupling is thus maximum when the phase velocity of the beat

wave in the frame of the plasma, vk = (ωk − k · V )/k (where V is the plasma flow), is

equal to the plasma sound speed cs, which will drive a plasma oscillation δne/ne (where ne

is the electron density) matching the ion acoustic wave dispersion relation (cf. Fig. 1). This

is equivalent to a Bragg cell, with a modulation of the refractive index N =
√

1 − ne/nc

(where nc is the critical density for the laser wavelength) traveling at the sound speed of

the medium. On NIF, CBET is controlled by using different wavelengths for different cones

of laser beams, i.e. vk is adjusted via ωk; typically, the corresponding wavelength shift ∆λk

(with ωk/ω0 = ∆λk/λ0, where ω0 and λ0 are the laser frequency and wavelength) is a few

Å, with vk < cs. Whereas on Omega, where all the beams have identical wavelength (ωk=0)

[13], CBET occurs because beams cross at the Mach 1 surface of the expanding coronal
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plasma where k · V = kcs (i.e. vk = cs in the plasma frame).

FIG. 1. Basic mechanism for CBET: a) two crossing laser beams with frequencies ωm, ωn and wave

vectors km, kn drive a beat wave with frequency ωk = ωm − ωn, wave vector k = km − kn, and

phase velocity vk = (ωk − k · V )/k in the frame of the plasma (V is the plasma flow velocity); b)

the ponderomotive force from the beat wave drives a density modulation in the plasma, and hence

a refractive index modulation, traveling at vk; c) if |vk| = cs, the refractive index modulation acts

as a Bragg cell scattering one laser beam in the direction of the other (i.e. energy transfer); being

able to control vk, e.g. via the frequency shift ωk between the beams, allows to set the direction of

power transfer (via the sign) and its amplitude (via the proximity of vk to cs).

CBET on NIF was initially predicted to be observable and controllable because of the

small amplitudes of the density modulations created by the beat waves, preventing non-linear

effects from occurring but still being large enough to allow significant amounts of transfer

due to cumulative effects from multiple crossing, taking place in fairly uniform plasmas over

very long (∼ mm) distances [3, 5, 14, 15]. The ion acoustic waves are typically strongly

damped, leading to broad resonance regions (as schematically represented in Fig. 1c) and

amplification gains being less sensitive to gradients or non-uniformities in the plasma.

Calculations using the linear response of an ion wave to the beat ponderomotive force

were in decent agreement with the 2009 experiments where NIF was typically delivering

200 TW of peak laser power with small wavelength separations (∆λ=1.5 - 5 Å) leading to

small amounts of transfer. However, in more recent experiments, where peak laser power is
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usually between 400 and 500 TW and where large amounts of power transfer are required to

achieve symmetric implosions of the DT fuel capsule (∆λ=6 to 9 Å), linear calculations fail

to reproduce the experimental observables, and in fact usually predict a full pump depletion

of the NIF “outer beams” which has never been seen in experiments. An artificial limiter

on the amplitude of the density modulations δn/n driven by the beat waves has thus been

introduced in the design calculations in order to recover some level of predictive capability

[8, 11, 16]; it is however purely empirical and lacking physics justification, and the values at

which one needs to saturate the waves are too low to be physically justified (δn/n ≃ 10−4).

The initial design calculations incorporating the effects of CBET on NIF targets were

done using an iterative sequence of simulations without any CBET coupled with off-line

transfer calculations to adjust the beam powers for the next time interval. Aside from being

tedious and labor intensive, these results were not self consistent. Hence there was a desire

to include a self-consistent inline model into the major simulation codes. We present here a

realization of such a model into an ICF simulation code.

II. MODEL EQUATIONS

A. Laser beam propagation

Let us first present the model equations and then discuss their implementation. For a

laser beam α, the evolution of the intensity Iα along the beam path (which direction is noted

z) is given by[4, 5, 17]:

∂zIα = ωα γαβ IαIβ + ωα γαR IαIR − να Iα. (1)

The three terms on the RHS represent respectively: i) the CBET coupling to other beams

β intersecting α in a given cell; ii) the SRS coupling; iii) the IB absorption.

The coupling term for SRS has in fact the same expression as for CBET: the coupling

between our test beam α and β, whether β is another laser beam (CBET) or the companion

SRS ray of α, is:

γαβ =
π re

2 mec2

k2
αβ

kαkβ ωαωβ

ℑ[Kαβ] (1 + cos2 θαβ), [18] (2)
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where re is the classical electron radius and me its mass, kαβ = |kβ − kα|, kα is the wave

vector of α; its norm is kα = (2π/λα)
√

1 − ne/ncα, ncα is the critical electron density at the

wavelength λα and θαβ is the angle between the propagation directions of beams α and β

cos θαβ =
|kα · kβ |
|kα||kβ|

.

All the wavelengths, including the SRS wavelength, are given (this package is designed

for “post-shot” simulations, where λR and IR(z0), the SRS wavelength and backscatter

intensity measured at the lens, are given at each time step, typically from SRS experimental

measurements).

The coupling coefficient Kαβ is given by:

Kαβ =
χe,αβ (1 + χi,αβ)

1 + χe,αβ + χi,αβ

, (3)

where the electron and ion susceptibilities are taken at the beat wave of α and β:

χe,αβ =
−1

2(kαβ λDe)2
Z ′

[

ωβ − ωα − (kβ − kα) · V√
2 kαβ vTe

]

(4)

χi,αβ =
∑

ions

−1

2(kαβ λDi)2
Z ′

[

ωβ − ωα − (kβ − kα) · V√
2 kα βvT i

]

(5)

where ωpe is the electron plasma frequency, λDe is the electron Debye length (with vTe =

λDeωpe, where vTe =
√

Te/me is the electron thermal velocity) and where

Z ′ [x] = −2 (1 + x e−x2

(ı
√

π − 2

∫ x

0

dt et2)

is the derivative of the plasma dispersion function of real argument.

Similar definitions apply to the ions, but due the resonant nature of the coupling, it’s

important to explicitly perform the species sum.

Note that we have these symmetries for Z ′ [x]:

ℜ
[

Z ′ [x]
]

= +ℜ
[

Z ′ [−x]
]

(6)

ℑ
[

Z ′ [x]
]

= −ℑ
[

Z ′ [−x]
]

(7)

For the case of SRS, some simplifications arise:

• since θαR = π (pure backscatter is assumed), 1 + cos2 θαR = 2 and kαR = kα + kR;
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• for typical SRS wavelengths, χiαR ≪ 1 so KαR ≃ χe,αR/(1 + χe,αR) ;

• the wavelength shift between the SRS light and the laser light is always much greater

than the Döppler shift from the flow, so the (kβ −kα) ·V term in the argument of the

Z ′ function can be ignored.

The SRS coupling coefficient thus simplifies to:

γαR =
πre

mec2

(kα + kR)2

kαkR ωαωR

ℑ
[

χe,αR

1 + χe,αR

]

, (8)

χe,αR =
−1

2(kαR λDe)2
Z ′

[

ωR − ωα√
2kαR vTe

]

(9)

III. LASER RAY CBET IMPLEMENTATION

We use the 3D laser ray package [19] that performs the tracking calculation for an arbi-

trary number of laser beams with a user specified frequency and time dependent power for

each laser. As shown in (1), the ray propagation equation depends on the intensities of all

other beams that traverse the current cell containing this ray. To compute these intensities,

during the initial tracking pass, the contribution of each ray is added to every cell the ray

crosses: Ir = P τr/∆V , where τr = (
∫

c ds/vg)r = (
∫

ds/η)r is the cell crossing time, ∆V is

the cell volume and P is the time-averaged power

P =
1

τ

∫ τ

0

dτ ′ P (τ ′) (10)

which includes the effect of laser absorption by inverse-bremsstrahlung. The cell averaged

ν̄ib is computed by an integral of the point coefficient using interpolated temperature and

density values inside the cell for better accuracy. Hence (10) is evaluated as

P = P (0)
1 − exp(−ν̄ib τ)

ν̄ib τ
(11)

so that the individual ray contribution per cell becomes

Ir = P τr/∆V = P (0)
1 − exp(−ν̄ib τ)

ν̄ib ∆V
(12)
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The total intensity for a given beam is just the ray sums

I =
∑

r

Ir (13)

Note that this intensity is the swelled intensity, unlike those in (1), so the beam coupling

coefficients given below are corrected for this. Also, during the initial tracking pass, the

local cell value of the k vector for each beam is accumulated as a power weighted sum of all

the rays in that beam traversing the cell. This method thereby accounts for the effects of

refraction and absorption on the beam’s propagation in the plasma.

We rewrite the CBET propagation equation (1) for two coupled beams:

∂τ1 I1 = p12 α2 η1 C12 I2 I1 (14)

∂τ2 I2 = p21 α1 η2 C21 I1 I2 (15)

where p12 = p21 = (1 + cos2θ12)/4,

α−1
1,2 =

ǫ0

2
(
mec

2

e
)2 kv

1,2 ω1,2

is the natural unit of intensity for a laser with frequency ω1,2, [20]

η1,2 = vg1,2
/c =

√

1 − ne/nc1,2
, and

C12 =
k2

12

4 k1

ℑ[K12]

where K12 is defined by (3).

We can now write the ray propagation equations (14), (15) in terms of the cell intensities:

∂τ1

∑

r1

P r1
τr1

|2 = p12 α2 η1 C12 I2 (
∑

r1

P r1
τr1

) (16)

∂τ2

∑

r2

P r2
τr2

|1 = p12 α1 η2 C21 I1 (
∑

r2

P r2
τr2

) (17)

To obtain the total beam transfer powers, we iteratively compute the pairwise coupling for

all active beams. Generalization of equations (16,17) to more than two beams and summing

rays for the total intensity of a single beam in a cell leads to



8

∂τ1

∑

r1

P r1
τr1

=
∑

q

(

p1q αq η1 C1q Iq

∑

r1

P r1
τr1

)

/∆V, (18)

where the sum over q includes all beams with non-zero intensities in the cell traversed by

the rays r1.

Integrating (16,17) for two individual coupled rays in a cell we get the power transfer

relations

δ P r1
|2 = p12 α2 η1 C12 I2 (P r1

τ1) (19)

δ P r2
|1 = p12 α1 η2 C21 I1 (P r2

τ2) (20)

Using the symmetries of Z ′ from (6,(7)) and summing over all rays in a cell we obtain

the relation for two beams

∑

r1
δ P r1

|2
∑

r2
δ P r2

|1
=

α2 η1 C12

α1 η2 C21

= −α2 η1 k2

α1 η2 k1

= −λv
2

λv
1

= −ω1

ω2

(21)

or

∆P12λ
v
1 = −∆P21λ

v
2 (22)

and from energy conservation we obtain the ion acoustic power

∆P ia = ∆P12 + ∆P21 = ∆P12

(

1 − ω2 − (k2 − k1) · V
ω1

)

(23)

The Döppler shift term is included to account for the ion acoustic wave deposition that

occurs even for zero wavelength shift for non-colinear beams. [21]

It is convenient to symmetrize (23) as:

δP
ia

r1
|2 =

1

2
δP r1

|2
(

1 − ω2 − (k2 − k1) · V
ω1

)

(24)

δP
ia

r2
|1 =

1

2
δ P r2

|1
(

1 − ω1 − (k1 − k2) · V
ω2

)

(25)
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A. Intensity iteration algorithm

A self-consistent solution to (18) requires iteratively adjusting the cell intensities to ac-

count for the cross beam coupling given by (16,17) for each ray, which is accumulated over

all rays to get the updated cell intensities. The total power transfer between beams (bq, bq′)

is given by the sum:

∆P qq′ =
∑

cells
qq′

∑

rq

δP rq
|q′ (26)

In (26) the sum over cells includes those that are simultaneously traversed by rays from

bq and bq′ .

Using energy conservation, the iteration converges when

∑

q<q′

(

∆P qq′ + ∆P q′q

)

=
∑

q<q′

(

∆P
ia

qq′ + ∆P
ia

q′q

)

(27)

to some user-specified tolerance:

error < tol
|LHS − RHS|(27)

∑

q<q′

(

∆P qq′ > 0 + ∆P q′q > 0
) (28)

To accelerate the intensity iteration, we save the final intensity results from the previous

time step and use those intensities to initiate the solution of (1) for each ray. Employing

this scheme, we have observed typical iteration counts less than three on current ICF target

simulations. Finally, we re-compute the laser pondermotive force to account for the beam

power shifts due to the CBET couplings, using the same algorithm which calculates the

non-transfer forces [22]. This algorithm includes both scalar and tensor components of the

forces which is possible because of the 3D tracking method.

B. Saturation model

From the fundamental coupling equation (1) we can see that at high laser intensities, the

coupling can increase without bound. In real life, stochastic ion heating saturates the CBET
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mechanism by increasing the ion acoustic velocity beyond the phase velocity of the externally

driven beat waves, driving them off-resonance. For a spatially under-resolved simulation, the

heating is spread over such a large volume that there is insufficient moderation of the CBET

coupling rate, leading to errors in the calculation. To address this, as discussed in [17], we

therefore apply an upper bound to the plasma wave amplitude to limit |δne/ne| < 10−3.

The density perturbation is driven by the pondermotive force due to the driven beat waves

and can be written:

∣

∣

∣

δne

ne

∣

∣

∣

qq′
=

(k2
qq′ c

2

2 ω2
pe

)

|Kqq′|
√

pqq′ αqIq αq′Iq′ (29)

where Kqq′ is given by (3), and we note the expression is clearly symmetric in q, q′. Hence

to enforce the amplitude limit, we re-write the Cqq′ of (14) as:

Cqq′ −→ min
[
∣

∣

∣

δne

ne

∣

∣

∣

qq′
, St

] ( ω2
pe

2 kq c2

) ℑ[Kqq′]

|Kqq′|
/
√

pqq′ αqIq α′

qIq′ (30)

where the user set saturation limit St is normally taken as 10−3. The saturation calcula-

tion by default is only computed once before the intensity iteration loop, which in tests has

shown not to significantly affect the final results.

IV. CBET EXAMPLE PROBLEM

To test the in-line CBET algorithm, we have run several comparisons to the off-line code

of Pierre Michel. One of the more complete examples is presented here. This example used

a uniform plasma cylinder with a prescribed velocity to test both terms in the arguments of

Z ′ in equations (4,5).

• Laser parameters:

– 24 NIF quads from upper hemisphere (same θ’s, φ’s and spot sizes as NIF),

focused at x = y = z = 0 (propagating towards z < 0)

– ∆λ = −4.5 Å (@ 1 ω) on inner cones, with 1 TW power on all quads

• Plasma conditions:
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– CH (50/50 atomic fraction, C1 H1 composition); Te = 1 keV, Ti = 0.7 keV

ne = 2% nc (1.8 · 1020 cm−3 @ 3 ω)

– uniform flow along z > 0 : Vz = + c/1000; no saturation limit used

• Numerical controls:

– rays/beam: 5000 in Hydra and Lasnex, 650-1300 in script

(number of pixels/beam varies with beam size and box resolution)

– simulation box: 100 × 100 × 100 cylinder in Hydra and Lasnex,

300 × 300 × 300 in script (Cartesian, δz = 30 µm, δx = δy = 40 µm)

In Fig. 2 we show the spatial profiles of the laser beams after the interaction region. Note

that the resulting intensities are much different from the initial equal intensities, and that

the 30◦ beams have large intensity variations across the spots, they are ‘hollowed out’. The

effect of increased resolution can also be observed in the smoothness of the script results

compared to the Hydra ones. It is rarely possible to use sufficient resolution in a real NIF

design calculation that would match the script’s, but tests have shown that the transfer

powers are rather insensitive to both the number of rays and the spatial resolution.

In Fig. 3 we show a comparison of the final beam powers relative to the initial ones, with

dramatic changes from the equal initial powers. These results also show excellent agreement

between the script and the inline calculations.
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FIG. 2. Laser beams intensity profiles at z = −4.5mm post-transfer with all quads well separated.

FIG. 3. Beam powers for NIF cones after CBET transfer. All the calculations agree very well, and

show that the coupling moved power from the outer cones to the inner ones. The Döppler term

for this example was chosen to be comparable in magnitude to the wavelength shift term.

V. COMPANION SRS RAY

This package assumes that an SRS ray propagates along each laser ray, following the same

path from the lens to the interior of the target. In reality, SRS propagates in the opposite
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direction as the laser, but we can easily calculate the propagation backwards, starting from

the lens and simply inverting the signs of the various terms.

The propagation equation for the companion SRS ray, noted R, along the same path as

the laser ray α, is therefore similar to (1):

∂zIR = ωRγαRIαIR + νRIR. (31)

Because the SRS propagation is calculated backwards, the exponential growth due to the

coupling to the laser pump (first RHS term) is negative (i.e. it has the same sign as the

second term on the RHS of (1); γαβ is negative for λβ > λα, which is always the case if β

represents the SRS ray). Likewise, the IB absorption (second RHS term) becomes positive

(i.e. exponential growth). The SRS propagation will therefore have to be interrupted as

soon as the IB absorption becomes larger than the SRS amplification gain. This is the

“convective gain threshold”, i.e. the threshold for existence of the SRS light (cf. examples

and preliminary tests in the next section).

The coupling of the SRS ray to other laser (or SRS) rays, also known as “re-amplification”,

is neglected (experiments by J.D. Moody et al. on NIF have demonstrated that the effect

is at most very small). This can be re-assessed in the future if needed.

A. Method

The SRS is assumed to exactly follow its companion laser ray. Its intensity needs to be

tracked in order to adjust the coupling between the laser and the SRS, however there is no

need to “launch” new SRS rays (one just needs to keep track of an extra quantity, IR(z),

along each laser ray).

The IB energy deposited in the plasma also needs to account both the laser and the

SRS absorption (calculated from Eqs. (1) and (31)). We use the Manley-Rowe relations to

accumulate the Langmuir wave energy so that it’s possible to inject that energy as a source

of hot electrons.

Finally, one must not forget to terminate the SRS coupling as soon as the threshold for

convective gain has been reached, i.e. as soon as:
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νR ≥ −ωRγαRIα (32)

However, in general it’s possible for the SRS intensity to vary in a non-monotonic fashion,

so to check for this, a global pre-scan is made to find the true minimum intensity along the

complete ray trajectory. This minimum point is then set as the origin of the SRS ray.

The contributions of the SRS rays to the laser pondermotive force is included together

with that of the main pump beams.

VI. EXAMPLE FOR ONE RAY ALONG A TYPICAL NIF-ICF HYDRO

PROFILE (SRS ONLY, NO CBET)

We illustrate the scheme by calculating the coupled laser and SRS intensities from Eqs.

(1, 31) in the absence of CBET (i.e. setting the first RHS term of (1) to zero).

We simply trace a straight ray following the centroid of a 30◦ NIF quad in the hydrody-

namics profiles calculated by a Lasnex simulation [23], as shown in Fig. 4. The green line is

the ray, propagating at 30◦ from Z=6.5 (“z0”) to Z=1 mm (“zf”), where Z is the hohlraum

axis; the color axis represents ne/nc.

The electron density and temperature along the ray, as well as the SRS gain, are shown

in Fig. 5. We first show the total gain integrated along the ray as a function of λ1, the

SRS wavelength; this gain is calculated for a fixed pump (laser) intensity of 1015 W/cm2 in

vacuum. It is thus equal to −ω1I0

∫

dz γ01(z) (cf. (31); we changed the sign in order to show

the positive SRS gain exponent along −z), where the integral is taken along the ray.

This is then used to get the wavelength of maximum gain, which in this case is 577 nm

(close to the experimental measurement). Fixing λ1 to this wavelength, we then calculate

the gain rate along the ray (bottom-right plot), i.e. −ω1I0γ01(z). The gain rate peaks near

Z=1.6 mm; in other words, the “real-life” expectation is that SRS will trigger from the

region near Z=1.6 mm at a wavelength near λ1=577 nm.

Figure 6 shows the result of applying the coupled-mode equations (Eqs. (1) and (31))

along the test-ray for λ1=577 nm, and using as input conditions I0(z0) = 1015 W/cm2 and

I1(z0) = 3.5 · 1014 W/cm2 (i.e. assuming 35% measured SRS reflectivity; the boundary z0

corresponds to Z=6.5 mm).
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FIG. 4. Hydrodynamics simulation used for this test (from Lasnex post-shot N110807); the model

will be tested on the green ray propagating straight (no refraction) along the centroid of a 30◦ NIF

quad from Z=6.5 to Z=1 mm.

As expected, the laser decays as it propagates towards the interior of the hohlraum, due

to both its IB absorption in the plasma and its depletion to the SRS ray. The SRS intensity

calculation, done backwards, also shows its depletion due to coupling to the laser until it

reaches the point convective gain threshold, near z=1.35 mm (zoomed-in insert in Fig. 6),

where Eq. (32) is no longer satisfied. At this point, SRS has reached its “inner” boundary
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FIG. 5. Hydrodynamics quantities along the test-ray: electron density and temperature, SRS gain

(integrated along the ray) vs. SRS wavelength λ1, and SRS gain rate (in mm−1) along the ray for

the SRS wavelength of maximum gain (λ1=577 nm). On these figures, Z is the position along the

ray projected on the hohlraum axis (from Z=1 to 6.5 mm).

value of ∼ 7 · 1012 W/cm2, and must then be turned off.

Following the “real” SRS propagation direction along −z, this means that SRS starts at

Z=1.35 mm with an intensity of 7 · 1012 W/cm2, and grows exponentially (while also being

re-absorbed, but the exponential growth overcomes the re-absorption) until it reaches its

final measured value of 3.5 · 1014 W/cm2 at Z=6.5 mm.

This also means that the SRS only got amplified by a factor 50. In reality, SRS is
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FIG. 6. Michel’s solution of the laser and SRS coupled mode equations (Eqs. (1) and (31))

along the test-ray. The insert is a zoomed-in plot of the SRS intensity as it reaches the point of

convective gain threshold along the ray, i.e. when Eq. (32) is no longer satisfied. At this point,

the SRS intensity must be forced to zero (SRS can not exist anymore beyond this point, since any

growth would be beaten by re-absorption).

expected to start from noise levels and be amplified by about 108-109. However most of

the amplification is expected to occur over a very short distance (few speckles lengths): our

scheme will obviously miss this part, which would be too difficult to evaluate anyway since

it is due to complicated non-linear phenomena (effects of laser speckles, kinetic effects etc.).

But the remaining amplification out of the resonance region is what will matter most from

an energetics (i.e. hydrodynamics) point of view, and is what we are trying to model here.

In Figure 7 a comparison of Michel’s script calculation to an inline calculation is shown.

The excellent agreement gives confidence that the inline calculation can provide an accurate

self-consistent model for design simulations.
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FIG. 7. Comparison between the script calculation for the SRS propagation and the inline one.

The green curves are the non-SRS results for IB absorption, the black curves include SRS depletion

and the red curves show the SRS intensity.
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